Searching for accelerometers : 2 results found | RSS Feed for this search

16.07 Dynamics (MIT) 16.07 Dynamics (MIT)

Description

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics. Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.Subjects

Curvilinear motion | Curvilinear motion | carteian coordinates | carteian coordinates | dynamics | dynamics | equations of motion | equations of motion | intrinsic coordinates | intrinsic coordinates | coordinate systems | coordinate systems | work | work | energy | energy | conservative forces | conservative forces | potential energy | potential energy | linear impulse | linear impulse | mommentum | mommentum | angular impulse | angular impulse | relative motion | relative motion | rotating axes | rotating axes | translating axes | translating axes | Newton's second law | Newton's second law | inertial forces | inertial forces | accelerometers | accelerometers | Newtonian relativity | Newtonian relativity | gravitational attraction | gravitational attraction | 2D rigid body kinematics | 2D rigid body kinematics | conservation laws for systems of particles | conservation laws for systems of particles | 2D rigid body dynamics | 2D rigid body dynamics | pendulums | pendulums | 3D rigid body kinematics | 3D rigid body kinematics | 3d rigid body dynamics | 3d rigid body dynamics | inertia tensor | inertia tensor | gyroscopic motion | gyroscopic motion | torque-free motion | torque-free motion | spin stabilization | spin stabilization | variable mass systems | variable mass systems | rocket equation | rocket equation | central foce motion | central foce motion | Keppler's laws | Keppler's laws | orbits | orbits | orbit transfer | orbit transfer | vibration | vibration | spring mass systems | spring mass systems | forced vibration | forced vibration | isolation | isolation | coupled oscillators | coupled oscillators | normal modes | normal modes | wave propagation | wave propagation | cartesian coordinates | cartesian coordinates | momentum | momentum | central force motion | central force motionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.Subjects

Curvilinear motion | carteian coordinates | dynamics | equations of motion | intrinsic coordinates | coordinate systems | work | energy | conservative forces | potential energy | linear impulse | mommentum | angular impulse | relative motion | rotating axes | translating axes | Newton's second law | inertial forces | accelerometers | Newtonian relativity | gravitational attraction | 2D rigid body kinematics | conservation laws for systems of particles | 2D rigid body dynamics | pendulums | 3D rigid body kinematics | 3d rigid body dynamics | inertia tensor | gyroscopic motion | torque-free motion | spin stabilization | variable mass systems | rocket equation | central foce motion | Keppler's laws | orbits | orbit transfer | vibration | spring mass systems | forced vibration | isolation | coupled oscillators | normal modes | wave propagation | cartesian coordinates | momentum | central force motionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata